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1 INTRODUCTION

It is well accepted that the Burgers equation provides a realistic simplification of the Navier-
Stokes system in Fluid Mechanics, One of the most important common features among
both equations is the presence of a quadratic nonlinear term and a linear diffusion operator.
Some optimal control results associated to the Burgers equation have been obtained in the
literature (see e.g., Glowinski and Lions (1994) and its references}. This work concerns

" with other type of control problem associated to the Burgers equation: the approximate
controllability for a final observation. To fix ideas, given some positive numbers T, L and
v we consider the following boundary control problem

y(t,O) =0, y(tuL) = u(t)i te (OiT)

¥(0, ) = yo(), z € (0,1)

Ye + YYr = PYzr = 0 in (0,T) % {0, L)
(1)



64

Diaz
where the control u(t) is assumed to be & function on (0, T) and the initial datum is given.
For the sake of simplicity in the exposition we shall assume that yo € L*°(0, L), Other
controllability problems associated to the Burgers equation are also considered (see Remark
1.5). We recall that the approximate controllability property, with final cbservation in a
Banach space of states, X, of functions defined on (0,1) (e.9. X = C([0,L]) or X =
L*(0, L)) can be stated in the following terms: given a desired state Y4 € A and £ > 0 find
a control u.(t) such that the solution y{t, 5 u) of (1) corresponding to u = u, satisfies that

”y(Tv i u:) - Ild”pl’ <e (2)

In Section 2 we shall prove that this property can not holds under this general statement.
To do that, we shall show that an Obstruction Phenomenon arises due to the
the superlinear term (v%)z/2 at the equation. This Obstruction Phenomenon was already
exhibited for the case of semilinear parabolic problems in a series of works: Henry (1978},
Diaz (1991a), (1991b), (1993a), (1994a) and (1994b), Diaz and Ramas (1993), (1994), Ber-
nis, Diaz and Ramos (1995).The results here presented complete and generalize previous
cousiderations on the Burgers equation made in Dfaz (1991a) and (1991b). As an applica~
tion we give a necessary condition for the approximate controllability of the Navier-Stokes

system on a rectangle ) = (0,01) x (0,Ly). For I = {L1} % [0, Ly], we consider the
boundary control problem

presence of

et (y Vy —vAy = =Vp i (0,T)x 0
divy =0 in (0,T) x
y=0 on {0,T) x (80\ T (3)
y=u on (0,T) x T

¥(0,2) = yo(z) on {1

We find a necessary condition on the pressure for the approximate controllability of the
problem (see Theorem 2 and Remark 2). Finally, in Section 3, we study the approxi-
mate controllability of the Burgers problem under suitable constrainis on the desired state
y#(z). We recall some previous results by El Badia and Ain Seba {1992) and Fursikov
and Imanuvilov (1993b) on the exact controllability for suitable desired statas y¢. Using
the last of those references we give a LP-approximate controllability for a larger clags of
desived states. We conjecture that some sharper results can be found following the ideas

of Diaz (1994b). We start here such a long programme by proving the LP-approximate
controllability for the general quasilinear problem

Yo~ Ay +div B(y) = uy, in 0,T) x
y=20 on (0,T) x 802 (4)
¥(0,z) = yo(z) on (2,

where {1 denotes an open bounded regular set of RN
B € C(IR : RM) is assumed to be differentiable at some
L.e. there exists M > 0 such that

and t is an open subset of §). Here
sa € IR and sublinear at the infinity,

B(s)| S e1 4 cals]  for any s € IR, |s| > M. (5)

The remaining parts of the programme introduced in Diaz (1994b)

will be developped for
the Hurgers problem elsewhere.

A
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2 OBSTRUCTION FOR THE BURGERS EQUATION

The main goal of this section is to show that the approx}';mal;e cont.rolial];ylility (1;1)& Tz
Ids for the Burgers problem (1).

P 1 <p <o, or X = C([0,L]) can not ho : : ' . °
20(81’152 ,We s;uﬁl prové the existence of an universal obstruction funciion \:/hlch w?ll prc:E
vide an explicit bound for any element of the attainable set Ry := {y(T,;u) : u

i f controls.
lution of (1)}, where I denotes the space o '
“ V‘?e ssc:::rtu;)y recSal)li}ng that the existence and uniqueness of solutions of prolbtllem ((11)9;?)1
be obtained in different ways. So, for instance, the results of Alt an@ Luck a&és([o )

can be applied showing the existence and uniqueness of a weak solut1c3nhy EE LP’(E) T:
L2(0, L)) AL ((0,T) (0, L))ALP(0, T : WLP(0, L)) for any p € [.1,00) with i ,ﬂ is.
W"ljpl(ﬂ L)) assw:lmed u € U = W"(0,T). In fact, it is not difficult to show that th

1
ion is much more regular. R

501‘1;‘1}?: elfci:éence of the mentioned universal obstruction fum_:twn 15 a conseq!.?nce Oifllt]}jl:
presence of the superlinear term yy, = (y?);/2 at the equation. Such a function w
built as solution of the following problem

LYY = vYe =0 in (0,T) % (0, L)
5(;}: 0) =0, Y(tv L) = +4oo, L€ (O,T) (8)
Y(0,z} = yo(c), z € (0,L).

THEOREM 1 W0, e,
(1) Problem (6} has a minimal solution Y € C{{0,T] : L*(0, L~5)4)FWL3’(0, T: W 0L tf),gs
for any e € (0, L) and for any 1 € p < oo. Moreover, there exists some positive cons

Cy, €y only dependent on L v and {yol|e such that

Y(,2) < Gy (L—l_—; - %) +Ca. )

(i) Let y(t,-;u) be the solution of the associated problem (1), Then
y(t,z;u) < Y{t,z) for anyt € [0,T] and c.e. z € (0, L). (8)

In particular the approzimate controilability property can not be satisfied in the set of staies
X =L1%0,L), 1 €£¢< o0,

PROOF. Given n € IN we consider the truncated problem

Yi+ VY - vl =0 in (0,7 x (0, L)
Y(:ZO) —0, Y(,1)=n, te(0,T) (9)
Y{(0,z) = y3{z) := min{yo(z),n}, =€ (0,L).

The existence and uniqueness of the solution Y, of (9) holds as rnentimaecl1 é);;%e;ml:lursihf;
more, the comparison principle is satisfied (see e.g. Alt and Luckhaus

e Nghgs <YYo <- on(0,T)x(0,L).

In order to construct a global barrier function we define

W(ll!) = I{l(L — IB)_& -+ I(Q., T & (0, L) (10)
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where K3, a > 0 and K, > 0 will be choosen later. Then
WW; ~ vWeo = aKE(L — z)~ 21 4 K1Ko(L — 2)™! — va(a + 1)K(L — )
So, making o = 1 we find that

WW. — vWoe = (=20 + K,) K (L — )7 + Ky KL — )%= f(z). (11)
Then, for any n € IN, we have
Yoot Vi¥oo = 0¥oee = 0 < WW, — IV, in (0,7} x (0, L)
Ya(t, =0z w(0), limsuprrb(yﬂ(tlz) -W(z)) <0, te (U?T)
Y2(0,2) < llyollwe < Wi(a), ¢ & (0, 1)
assuming that
Ki2%, K220  and |yl € KoL) + K. (12)
In particular, if
Ki=2v  and 2 lyofle — 20L7 . (13)

then (12) holds, f ¢ L=(0, L —¢), forany € & (0,L), and from the comparison principle
we deduce that ¥,(t,z) < W(z) for any n ¢ N, t € [0,T) and a.e. z € (0,L). By the
Beppo-Levi Theorem we have that Ya(t,)) — Y(t,-) in LP(0,L — ¢), for any ¢ € (0,.L)
ar:Ed any 1 < p < co. Using straightforward arguments it is easy to see that ¥ is the
minimal solution of problem (6) and that (7) holds. Part (ii) comes from the fact that if u
is a bounded function then choosing ny € IN such that ng 2 max{||yollco, ||}, We have
yltzu) < Yi(t,z) forany n > ng, t & [0,T] and a.e. z € (0, L). Finally, if the desired
state yy(z) is such thaf yy(z) > W(z) on an open subset of (0, L) then condition (3) fails
foranyu €U, foranye>0. ,

REMARK 1

1. The fact that (1) is not approximately controllable can also be proved by using an
universal integral estimate as obtained in Fursikov and Imanuvilov (1993} by multiplying
thf: equation by (b—z)"y} (¢,z) with b € (0, ) and nn > 5, integrating by parts and applying
Halder and Young inequalities. Such a method was already introduced by A, Bamberger
for the study of superlinear semilinear parabolic equations (see Henry (1978)). ‘A more
sophisticated energy method can also be applied to higher
equations: see Bernis, Dfaz and Ramos (1995).

2. The obstruction phenomenon also holds for othe
with superlinear terms in the equations such as y; — Ay + AlyjP-ty = 0 {p > L: superlinear
semilinear equation), g — Aly|[™ly = 0 (m > 1: the porous media equation) and Y —
div (|Vy[P~Vy) = 0 (p > 2 Now-Newtonian flows). See Dfaz (1891a).

3. The study of boundary value problems blowing-up on a part of the boundary has been
largely considered by many authors: Bieberbach, Rademacher, Keller, P.I,.Lions and Lasry,
‘etc, (see references in Bandle and Marcus (1990), G.Dfaz and Letelier (1993) and Bandle,
Diaz and Diaz (1994)).

4. We point out that the conclusion of Thearem 1 holds if « is not bounded (
and pass to the limit). It also holds for solutions of the non-homogeneous equ

order superlinear parabolic

r nonlinear parabelic controls problems

truncate u
ation

Y+ Yo — Yoz = f(t,z) . (14)
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and the rest of conditions as indicated in (1), assuming that f € L*((0,T) x {0, L — ¢)) for
any ¢ € (0, L) and

Ft2) S ML — =)+ My(L — )™ for any (t,2) € (0,7) x (0, L) {15)

for some nonnegative constants M, and M,.

5. Similar results can be obtained for other control problems associated to the Burgers
equation. So, for the case in which the contral acts on the left boundary, .e. y{t,0) =
u(t), y(¢, L) = 0, t € (0,T) and the rest of conditions of (1) an inequality (analogous to
(8)) holds

% — ¢ Syt z;u) forany t e (0,T), ae z €(0,L) (16)

for any bounded function u and for some constants ¢, and ¢;. Analogously, consider the
controllability from the inferior problem

y(t,O) = y(tr L) =0, te (O:T)
4(0,z) = yo(z), z € (0,L),

Ye +yy:: —~ Vlpr = UX in (O,T) X (0, L)
(17)

where w = (, b) is an open subinterval of (0, L) and u € L3(w). An easy application of the
arguments of Theorem 1 shows that

ylt,zu) < o ( - %) +¢;  foranyt€(0,T] and a.e. z € (0,2) (18)

a—x
for any u € L*(0,T") x w) and for some constants ¢; and 3. o

We shall end this section by applying Theorem 1 to the study of the approximate
controliability of the Navier-Stokes system. Such a question was already raised by Lions
(1990) and still remains an open question. Our contribution will be limited to give a
necessary condition on the pressure assuming that the approximate controllability holds.
For the sake of simplicity in the exposition we shall merely deal with the case of a planar
flow occupying a rectangle 8 = (0, ;) % (0, Lz} (see problem (3) in the Introduction).
Many other domains and other control problems can be considered analogously.

THEOREM 2

Let yo € L(Q)*. Consider ¢ > 0 and yu4 = (ya1,Va2) € L*(Q)? such that there exists

a positively measured subset P of @ and a constant C > {|lyo,[leo — vL1], such that

s (=) — w{L = )™ = Clalluse)> & (19)

Let u = (uy,ug) be any control such that ||y(T,;u) - Yalfraay < €. Then necesarily
=== (t, 21, 33;u) > WO (Ly - )7 (20)
1

on some positively measured set M C (0,T) x .

The proof will use same comparison results between the solution of & Burgers problem (1)
and the first component of the solution of the Navier-Stokes system (4). A first result in
this direction is the following
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LEMMA 1

L;t z € c,ﬁf((o,T) % {0, L1)) N ¢([0,T) x [0,
classical solution of (3). Let z ¢ C(10, 7] x (0, L,)

Z 2z — Vizo = ft,z;) in (0,T) x (0,L1)
} (21)

Ly)) and assume that v = .
y =
) be such that (y1,92) is o

3(8,0) =0, liminfxw, Z(t,:l:) p- “ul(t,‘)”Lm(r), t& (0 T)
#(0,z:) > ”yO.IHL“’(Q): xp € (,0 Lyl)

where f € C((0, T) x (O;Ll)) verifies

Op
tz) > -0 -
flt,z) = o (tzna5u)  for (L1, 20) € 0,T)x0 (22)
(the control u = (u1,u2) in (3) is here assumed to be known), Finally, assume that
=(b) >0 forany (1,2,) € (0,7) x (0, L), ' (23)
Then
z(t, ) > 1(t, T1, ;1) forany t ¢ 10, 7] and (z1,74) € 0. (24)

" m ( ) 1 ( )
I ILO( OI IIO ( 21 4 )d 23 WE can a—SSHmE, Wlthout IOSS Of gener&hty, Lha.t Lhere existg

su, t — =
[O.T]Eﬁ(yl( ) &1, Ta) 2(t,3,)) = 1 (o, T1,0: T2,0) — #(2, T10) >0

(otherwige (24) holds). Define w(t, 2, z;) = vty 2) 2{t,z;). Then

! dz
=L = e 9
Fr, { 0: 30,1, To,2) = EP (t6,%01) > 0 and "Z‘: (to, To1, To) = 0,

A .
wlto, To,1,Toz) €0 {ie. Ay;(to,l‘o.hmo,z) < 2y (toyﬂfnx))

and

Wlty, @10, Tg0) > 0.
On the other hand

Wt = —i1¥1,e; — Y2¥1e + vAY; — YZzizy =Pz — [+ zz
2, -
Thus - 1

. - wt(tﬂa Tp1, IO,Z) S '—T.U(to, Z0,14 zO.?)zﬂ (th Io']_) < 0
which is a confradiction. g

A more general result obtain
: , ed by replacing (23) by o
fmd vah.d for bougded weak solutions of the Navie(ar-S)tolz,es
intreducing an artificial constant in the Burgers equation
LEMMA 2

Letz e c(fo,7): 120, 2,)) n 120, 7, B0, L) nWhio, 7 L0, 2,)

ative function satisfying

nonnegativeness condition,
problem, can be proved by

) be a nonneg-

z(t,O) =0, z(t?Ll) 2 ”ul(tv ')”L“’(ﬂw te (D: T)

2(0,2;) > 5o, /tr.eo (), @ € (0, Ly).

Zt + 222;1 T VEng, = f(ta ml) in (O) T) x (01 Ll)
} (25)
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Letu € U C L®((0,T) x T')* be given such that (3) has o unigue bounded weak solution
y(t,5u) = (5(t, s uhya(t, - u)) of pressure p = p(t,ju). Assume f € LH(0,T) x (0, L,))
satisfying (22). Then

z(t, 1) 2yt 2,320 0)  for any t € (0,7 and a.e. (z1,22) € 0.

PROOF. We start by noting that from the incompressibility condition divy = 0 we
deduce that

1
(y . V)y1 = Y10+ Yalhe, = —-y12 + (ylyi):: — Y2z,
2 N

1 : \
= (59?) + (Y1¥2)es + W1¥1,2 = dv(yE, yaya)-
£

Then
z+div (2], 422) — vAZ > Y+ div (v, yam) = vAy in (0,7) x 0,
e> on (0,T) x 80
20, > 1.(0, ) on .

Finally the comparison theorem of Dfaz and de Thelin (1994) (see Theorem 3) can be
applied since the function K : (0,7) x  x R — IR? defined by K(t,zy,35,7) =
(r*,ya(t, 21, 72)r) generates a locally Lipschitz functional on L1(Q) for any fixed ¢ € [0,T].
|

PROOY of THEOREM 2. Assume, by contrary, that =Pz, (t 21, @2 T u} € 20(Ly —
z)~* a.e. on (0,T) x Q. Taking #(t,z1) = v(Ly — 7)~! + C and arguing as in Theorem 1
it is easy to see that Lemima 2 can be applied on (0, L, — &) for any § > 0 small enough.
In consequence we have yi(t, 71, z2;u) € z(t,2,) for any ¢ € [0,T) and a.e. (z1,29) € .
Therefore

(T, 1) = yallisgap = (T, 5 0) — vralliye

2 || (T, 5 u) =yl ey + 1 e — 9Ty u)], ey
2 “ [yl'd — V(L — -’E)_l —_ C]+ HLZ(P) > e

which is a contradiction, m

REMARK 2

Roughly speaking Theorem 2 says that if ya,1(21,22) is big enough near the boundary
x1 = 0 then necessarily ps, (£, 71, 2) must be “very-negative® on some part of (0,T) = .
Notice that although we do not know if this is our case, there are many explicit solutions
of the Navier-Stokes system on special domains having p,, = 0 for some i and that this
would contradict the necessary condition for the approximate controllability. g
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3 SOME CONTROLLABILITY RESULTS: THE

BURGERS EQUATION AND A R,
ELATED
QUASILINEAR EQUATION

A .
lthough the obstruction phenomenon shows that the approximate controllability can

not hold, some partial results in this directi
irection can be obtained. i i
(1992) use some variants of the Hopf-Cole transform:ti R fo o o ead Ain Scb

bility of problems (1) and (17) when the desired state
O(E) wAhere £ is the set of attainable states associated

A different approach wae followed by Fursikov and
several results on the attainable set associated to the

; L

Isest;& f;))r 1f;l;eat;o;'rnulla,tt;‘mn g;vzn 1; (1) says the following: Let y, € HY(0, L) arbitrary and
: ) solutlon of the Burgers equation satisfying 7 $,0) = ’

9(0,z) = yo(z) on (0, L) but without any ; ption i 2 g E L Qo

. , Y prescription at z = L. Defipe =g
',fli‘yllexi Z,Eﬁz ez:s;s 50d> 0 sutchitha.t for any 6 ¢ (o, bo) there exists ¥ 2{(1?1(0 z,)(i::f;;)h
- Y5 = 0 and 2 coatrol ¥ € C(0, T h that if y* i io

associated to the data y? and v theg y*((ii’,m));l;;(T,m;t):(g (tj o) i the soluion of W

1 h he lp f -
result
VV § hB ) the abOVe we can prove a L &pproxxma.he Controllablhty Cr1

PROPOSITION 1
,I;et Yo € L*(0, L) and let va(-} = (T, ) where fecC
of the Burgers equation satisfying F(,0) =0 fort e (

Then, for any e > ¢ # 1
Sher \eTe exists a controlu c(0,7)

£
on @ to prove the exact controlla-

¥4 belongs to the transformed set
to the linear heat equation,

Imanuvilov (1993b). They prove
Burgers equation. Their main result,

([o,77: {J""(O,L)) is any solution
0,T} and §(0,2) = vo(z) on (0, L)
such that for any 21 <p<eo, we

(T, 5 u) - vdllLry < e

Ptl;.OOF. By regularizing y we can find o € H'Y(0, L)
z :r ha?d, I?y applying the T-accretiveness of the operator “Yswtyye on L¥(0, L) (i.e. b
generahzation of the classical maximum principle, see, e.g. Benilany (3981)) we, knovlv.et.ha.}l‘,’

fu(t,z), i = 1,2, are solutions of |
Lilt, ), problem {1) associated
L*(0, L)) and to the same boundary da.tum(u)(t) :h:;a‘:e I:Z\f:e il et voi(z) (s €

such that llve —Folleo < £/2. On the

”yl (i, ) - y2(ta )“w < ”yﬂ,l(‘) - yO,Z(')”oo (26)

for a 7 ‘
o anl;ysoiig,i’]. CLOe(;d%c')w y(f,a:) be the iolution of the Burgers equation for initial datum
i “_J(Jt A)u 1_.10tns #(t,0) = 0, g2, Ly=§(t, L) fort ¢ (6,T). Thus, by virtue of
R e Igla, —l Ft Mo < £/2 for any ¢ € [0,T]. Now, by the mentioned result by
vt € (0 L)nx};l;vq(lf)%]f) we ded'uce the existence of a control function u € C(0 T)
o asgoci&ted ,to 3 i ; ”?’io ~ 3l _<1 min(y/2,¢/2) such that if ¥*(t,z) is the solutior,l of
otociate and yg we have y*(T,z) = #T,z) on (0, L). Finally, if y(¢, z; u) is th
1 of (1) associated to u(t) and yo(z), by virtue of (28) we have v ’

”y(Ta ) - yd(')“w < ”y(T1 ) - #(T, )”w +15(T, )= y‘(Ta )”00

HIV () =0T, oo < /2 + min(do/2,£/2) S e m
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Notice that if we define the class of functions
Vi={wel((0,L): wz)<Y(T,z) foranyze (0,L)}

where ¥ is the universal obstruction function given in Theorem 1 then, arguing as in the
proof of Theorem 1, it is clear that the desired state y; considered in Proposition 1 satisfies
that ya € Y. Notice also that part (ii) of Theorem 1 proves that if, for instance, we know
that y4 € C{0,1) satisfies the C®-approximate controllability property then, necessarily,
y2 € V. In fact, we conjecture that this necessary condition is also sufficient. Such type of
results was obtained in the case of superlinear semilinear problems in Dfaz (1994b). The
proof there was established in two different steps: &) truncation of the nonlinear term and
application of approximate controllability results for sublinear semilinear equations, and
b) obtention of a priori estimates on the control {associated to the truncated problem)
independent of the truncation value n-€ IN.

A first difficulty to apply such a programme for the case of the Burgers equation is that,
as far as we know, there is not any controllability result for the associated sublinear case
available in the literature. Due to that, we shall start here the mentioned programme by
considering the question of the L*-approximate controllability for a general class of quasi-
linear parabolic problems including the case mentioned above. For the sake of simplicity
in the exposition we replace the boundary controllability considered in (1) for an internal
controllability formulation. More precisely, let £ be an open bounded regular set of RN
and w be an open subset of . Given yo € 1?(Q) we consider the control problem (4)
mentioned in the Introduction. :

The existence of a solution y € C([0, T : L*(Q2)) (when the control v € L*((0,T) X w)
is given) can be obtained by different methods (see e.g. Alt and Luckhaus (1983)), The
uniqueness of solutions is a more delicate question. It was established under the additional
assumption

B g C®(IR: IRM), (the space of Holder continuous functions), and o > %

by several authors: Alt and Luckhaus, Artola, Chipot and Rodrigues, Gagneux and Guerfi,
Diaz and de Thelin (see references in Diaz and de Telin (1994)). More recently, the unique-
ness of the solution has been established for merely continucus functions by Gagneux and
Madaune-Tort (1994) using previous ideas introduced by Carrillo {1986) for the elliptic
case. Concerning the approximate controllability we have

THEOREM 3
Under condition (5) on B problem (4) is approzimately controllable in L2(1).

As usual, we shall prove Theorem 3 through a fixed point argument applied to an
operator assoclated to a linearised problem. So we consider, previously, the following

problem
v~ L)y =wxe in(0,T) x

y=0 on (0,T) x 602 (27)
y(0,2) =1 on {2
where
Lty = Ay — div (b1, Jy) (28)

assuming (for simplicity) b € L=((0, T') x ). The existence and uniqueness of the solutions
y €C([0,T]: LA(Q)NLA0,T : H(R2)), for a given data yo € L*(R) and u € L¥(0,T) xw)
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can be obtained, for instance, by applying the theory of abstract operators \A(t) such that
A(t) + Al are maximal monotone operators on L*(f2) for some A > 0 and a.c. ¢ € (0,7)

(see e.g. Brezis (1973)). We point out that, in general, A cannot be taken as A = 0 if b #0
(see Lemma 8.4. of Gilbarg and Trudinger (1977)).

PROPOSITION 2

When u spans L2((0, T') xw)y ¥(T, ;u) spans en affine subspace which is dense in LE(Q).

PROOF. We follows the arguments of Lions (1968

). Without loss of generality we can
assume that yo = 0, Let g € L*(1) such that

/ny(T,n:; wlpo{w)dr =0  forany u & L*((0,T) x w). (29)

Let L* be the formal adjoint o

perator of L, d.e. L*(t) = Ap + b(t, ) - Vi (see Gilbarg
and Trudinger (1977) p. 172).

Define ¢ as the solution to the backwards problem

~@r =L ()p=0 in(0,T) x 0
=0 on (0,T) x 69

. (30)
(T, z) = pp{z) on
Applying Green’s formula we get
T :
]ﬂ (T, i u)po(z)de = fg fw o(t, z)ult, z)dzdt. (31)

Therefore (29) implies that ¢ = 0 in {0,T) x w. Finally,
property (see Corollary 1.2 of Saut and Scheurer (1987

operators) we conclude that ¢ = 0 in (0,7)
Banach theorem, =&

applying the unique continuation
), valid for non necessarily selfadjoint
% £ and the conclusion holds by the Hahn-

In order to consider the ronlinear problem (4)
application g4+ u (for a fixed € > 0)
map since it is easy to see that there

we shall need more information on the
found in Proposition 2. In fact this is a multivalued
are infinitely many u € L#((0,T) x §1) satisfying

9(T, ) = yallaqay <, (32)

where y(2,;u) denotes the solution of (27). We shall follow now some direct methods
introduced in Lions {1992a), (1992b) and later generalized and improved in Fabré, Puel
and Zuazua {(1992a), (1992b) leading to the existence of “quasi bang-bang controls”. The
results of this last reference can be modified easily to our context although in the mentioned
work it is always assumed that £* = £ = A. Given o € L2(2) we define the functional

Tleo) = 3 ( L [t r)ldmdt)z +ellvollizg ~ [ valoheolz)dz.

Following Fabré, Puel and Zuazua (1992b)

this functional is continuous from L%(D) into
IR, strictly convex and satisfies the coercive

ness condition

inf ZL20)
lleol|=o0 [l¢g]2
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(this last condition is proved from the unique continuation property obtained in Saut and
Scheurer {1987)). Therefore there is a unique % € L*(Q) such that

J(e) = min T (¢°). (33)

woEL2 ()

Tt is easy to see that, in fact, o = 0 iff |lvall2 < e. By studying the associated Buler-
Lagrange (multivalued) equation it is proved the following result.

PROPOSITION 3

Let g be the solution of (33) and let (2, z) be the solution of (30) associated to (g = vy.
Then there exists v € sign (¥)xw such that the control u 1= (1ML omyxuy)v leads to a
solution y(t, ;1) of (27) such that ||y(T, ;u) — yu| < e.

EMARK 3
* The operator £ defined in (28) can be taken, more generally, of the form
Noa dy Yo
=3 | aylt,2) o 2 (bi(t, 34
=3 5 (st 22 ) + 3 gt,n) (34)

with a;; € CH(0,T) % Q) satisfying

S oyt 6 2 ale O, Vita)e (0,7) 2, Ve € R

fj=1

for some a(z,t) > 0 and b = (b,...,bn) € L=((0,T) % ©2), We point out that in Glowinski
and Lions (1994) the nondivergential form operator

Nood h
b=% 5 (au(m)a—;j) Vo Ty (35)
was considered under the assumption Vi € L=(Q)N and div Vg = 0 on . Notice‘tha,t -
der this assumnption the operator can be written as in (34) (u.se tl}a,t div (Voy) = div Voy+
Vy-Vy). Finally, we point out that if b is a W' {0} function, independent on t, then the
result of Lin (1991} allows to know that the set {(1,z): 1/)‘(1&',:1:) =0, ¥ solution of (30)}
has zero Lebesgue measure and so the controls u, in Proposition 2, are of type bang-bang.
o

PROOF of THEOREM 3. Let us assume that B {s differentiable at s = 0. The

case so # 0 can be easily treated by an homogeneization argument. Define the function
g: R — IR.N by

B(s) - B(0)

8(s) = p

if 3 # 0 and g(0) = B'(0).

From the regularity of B and (5) it is clear that g € C(R : RM) N L=(R : IRN).’ Qwen
z € L2((0,T) x ), we define b = —g(z) € L=((0,T) x ) and so, by Pro‘pomhog 2,
the associated linear problem (27) is approximately controllable. More precisely, given
e € L*(9) and & > 0 let u(z) be the control and y*(¢,; 2) the solution of2 (27) mentioned
in Proposition 3. Define now the nonlinear mapping A : L3() — P(L*(D)) by A(z) =
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{yf(t, -ju(2)) for some u(z) € |[Plhsign()x.}. Notice that A can be multivalued since the
uniqueness of u(z) is not assured. It js easy to see that any fixed point of A allow us to
o.btam the conclusiosl of t‘he theorem. In order to apply the Kakutani fixed point theorem
Sn thri:?wea.k form given in Aubirll (1984)) we need to check the following conditions: (3)
Az €l (0, 7) % ﬂ.), the'set A(2) is non-empty, convex and compact in L*((0, T') x 02), (i)
h(z) is upper Ileml—cm}tmtlous. The proof of both properties can be obtained by adapting
the arg'umer'ﬂ.s of Fabré, Puel and Zuazua (1992b). The convexity of A(z) is a consequence
of tht? hne.anty of (27) and the convexity of the set {vel¥((0,T)xN): ve sign(a,b)xq} A:s
)g:(z) 1szuruform1y bounded in L2((0, T) x §1) we can prove the existence of a compact usjui)set'.
- L ((O,T)*x ) such that A(z) C X for any z € L*((0,T) x Q). To prove this we.first
E?tgceTt!mtq{y (5 2)} and {#:(:,-32)} remain uniformly bounded in L2(0, T : H{(R)) and
: ( )T H (Q))lrespectively when z runs L*((0, T) % (1) (this can be obtained multiplying
¥ y™(z), integrating by parts and applying the coerciveness of £(t)). Then, by well-known
results (s.ee eg. Corollary 4 of Simon (1887)), we conclude that {°(, 2)} is relativel
compact in L. ((.0, T} x 2). Choosing as X the closure of thig set in L")‘((O’ 1”) X ) the roo}fj
of property‘(l) is reduced to show that A(z) is a closed set. Thig is plzoved withouf an,
difficulty using tlvla.t the multivalued (maximal monotone) graph sign{-} is strongly-weakly
closed, the coerciveness of L(t) and the compactness of the Green operator associated tz
(27). The proof of (ii) follows as in Fabré, Puel and Zuazua (1992b) once that we alread
know the compactness of the set & and the continuity of function g @ =
REMARK 4

Theorem 3 can be improved in several direct] i
: ) ctions. First of all, following closely the
a.rguénenlts of Fa,'bre, Puel and Zuazua (1992b), the approximate controllability progerty
Z;l; i.a. s«::S obtmtne;il o}?lthe spaces LP(§1), 1 < p < co, and C°(%1). On the other hand, the
roximate ¢ ili i i ’
ikt ontroilability can be obtained for a more general class of nonlinear equations
ye— Ay +div (B(y)) + f{y) = uy,,

assuming B as before and J be a continuous real functi i i
? i
oD 2s befo i nction, differentiable at some s, € IR
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